Lesson 8
Converting the Grid-Magnetic Angle

Key Terms
- arc
- declination
- grid convergence
- Grid-Magnetic (G-M) Angle

WHAT YOU WILL LEARN TO DO
- Use a compass and grid to locate a position on a topographical map

LINKED CORE ABILITIES
- Communicate using verbal, non-verbal, visual, and written techniques
- Apply critical thinking techniques

SKILLS AND KNOWLEDGE YOU WILL GAIN ALONG THE WAY
- Use the declination diagram to convert grid azimuths to magnetic azimuths
- Use the declination diagram to convert magnetic azimuths to grid azimuths
- Convert a magnetic azimuth when the G-M Angle is greater
- Define key words contained in this lesson
Introduction

In this section, you learn how to use the declination diagram to convert grid azimuths to magnetic azimuths and vice versa. Converting the Grid-Magnetic Angle (G-M Angle) is one of the most difficult tasks to understand in map reading; therefore, this lesson presents simple step-by-step procedures for converting the G-M Angle.

The Declination Diagram

Mapmakers place the declination diagram in the lower margin of most topographic maps.

Declination is the angular difference between true north and either magnetic or grid north. There are two declinations, a magnetic declination and a grid declination. The declination diagram shows the angular relationship, represented by prongs, between the three norths (see Figure 1.8.1). However, the position of the three prongs in relation to each other varies according to the declination data for each map.

Furthermore, mapmakers usually do not plot the angles between the prongs exactly to scale. Although you can obtain the position of the norths in relation to each other from the diagram, you should not measure the numerical value from it. For example, if the amount of declination from grid north to magnetic north is one degree, the arc shown on the diagram only represents the direction of the declination and the diagram may exaggerate its value. If measured, the declination may have an actual value of five degrees.
The Grid-Magnetic (G-M) Angle

The Grid-Magnetic Angle, or the G-M Angle, is the angular size that exists between grid north and magnetic north in the year that mapmakers prepared the angular size. It is an arc, indicated by a dashed line, that connects the grid-north and magnetic-north prongs. Maps express this value to the nearest one-half (1/2) degree with mil equivalents shown to the nearest 10 mils. The G-M Angle is important in map reading because it helps a user to apply direction to an object that is on a map to its actual direction on the ground and vice versa.

Grid Convergence

The grid convergence is an arc indicated by a dashed line connecting the prongs for true north and grid north. The value of the angle for the center of the sheet is given to the nearest full minute (of degrees) with its equivalent to the nearest mil. Mapmakers show these data in the form of a grid-convergence note.

Conversion

There is an angular difference between the grid north and the magnetic north caused by the attraction of the earth's magnetic field (found in Northern Canada). Because all compasses point toward magnetic north, the location of this magnetic field does not match exactly with the grid-north lines on the maps; therefore, a conversion from magnetic to grid, or vice versa, is needed.

Conversion with Notes

If the declination diagram on a map provides conversion notes explaining the use of the G-M Angle, simply refer to them. One note gives instructions for converting a magnetic azimuth to a grid azimuth. The other shows how to convert a grid azimuth to a magnetic azimuth. The conversion (to add or subtract) depends on the direction of the magnetic-north prong relative to the grid-north prong.

Conversion without Notes

Some maps, however, do not contain these declination conversion notes. Thus, it is necessary to convert from one type of declination to another. A magnetic compass gives a magnetic azimuth, but in order to plot this line on a map with grid lines, you must change the magnetic azimuth value to a grid azimuth value. Therefore, you must use the declination diagram for these conversions. A rule to follow when solving such problems is “starting from the reference line, always measure the angle to the azimuth line in a clockwise direction.” With this rule in mind, you can now solve the problem using the following steps (see Figure 1.8.2).

Figure 1.8.2: Converting without notes.

Courtesy of CACI and the US Army.
1. Draw a vertical, or grid-north, line (prong). Always align this line with the vertical lines on the map.

2. From the base of the grid-north line, draw a direction line (or an azimuth line) at roughly a right angle from north, regardless of the actual value of the azimuth in degrees.

3. Examine the declination diagram on the map and determine the direction of the magnetic north (right-left or east-west) relative to that of the grid-north prong. Draw a magnetic prong from the base of the grid-north line in the desired direction.

4. Determine the value of the G-M Angle by drawing an arc from the grid prong to the magnetic prong and placing the value of the G-M Angle above the arc.

5. Complete the diagram by drawing an arc from each reference line to the vertical line you first drew. A glance at the completed diagram shows whether the given or desired azimuth is greater, and thus whether you must add or subtract the known difference between the two azimuths.

6. The inclusion of the true-north prong in relationship to the conversion is of little importance.

**Applications of the G-M Angle Conversion**

For the remainder of this lesson, you learn how to apply this conversion technique when you have an east G-M Angle, a west G-M Angle, and when the G-M Angle is greater than the magnetic or grid azimuth.

The first application is to convert an east magnetic azimuth to a grid azimuth.

**Working with an East G-M Angle**

To plot a magnetic azimuth of 210 degrees on a map, you must convert it to a grid azimuth. To do so, follow these steps:

1. Determine the declination in degrees. In this example, it is 12 degrees east (see Figure 1.8.3).

2. Because the arc from magnetic north to the azimuth line is shorter than the arc from grid north to the azimuth line, you must add the G-M Angle. This yields a grid azimuth of 222 degrees.

To use a magnetic azimuth in the field with a compass when you have a grid azimuth of 303 degrees, you must convert it to a magnetic azimuth.

The second application is to convert an east grid azimuth to a magnetic azimuth.

1. Determine the declination in degrees. In this example, it is 10 degrees east (see Figure 1.8.4).
2. Because the arc from grid north to the azimuth line is longer than the arc from magnetic north to the azimuth line, you must subtract the G-M Angle. This yields a magnetic azimuth of 293 degrees.

The third application will be to convert to a magnetic azimuth when the G-M Angle is greater (see Figure 1.8.5).

In converting a grid azimuth to a magnetic azimuth, when the G-M Angle is greater than the grid azimuth, first do the following:

1. Add 360 degrees to the grid azimuth. In this example, the grid azimuth is 2 degrees (refer to Figure 1.8.5). You can now convert the grid azimuth to a magnetic azimuth because the grid azimuth is larger than the G-M angle.

2. This procedure is the same as Step 2 in the last example. Because the grid north arc of 362 degrees is longer than the arc from magnetic north to the azimuth line, you must subtract the G-M Angle. This yields a magnetic azimuth of 346 degrees.

**Working with a West G-M Angle**

The fourth application is to convert a west magnetic azimuth to a grid azimuth. To plot a magnetic azimuth of 65 degrees on a map, you must convert it to a grid azimuth.

1. Determine the declination in degrees. In this example, it is 8 degrees west (see Figure 1.8.6).

---

**Note**

Because there are no negative azimuths on the azimuth circle, 0 degrees is the same as 360 degrees; therefore, 2 degrees [in this example] is the same as 362 degrees. This is because 2 degrees and 362 degrees are located at the same point on the azimuth circle.
Chapter 1 Map Skills

2. Because the arc from magnetic north to the azimuth line is longer than the arc from grid north to the azimuth line, you must subtract the G-M Angle, giving you a grid azimuth of 57 degrees.

To use a magnetic azimuth in the field with a compass when you have a grid azimuth of 93 degrees, you must convert it to a magnetic azimuth.

The fifth application is to convert a west grid azimuth to a magnetic azimuth.

1. Determine the declination in degrees. In this example, it is 14 degrees west (see Figure 1.8.7).

2. Because the arc from grid north to the azimuth line is shorter than the arc from magnetic north to the azimuth line, you must add the G-M Angle. This yields a magnetic azimuth of 107 degrees.

The final application is to convert to a grid azimuth when the G-M Angle is greater. In converting a magnetic azimuth to a grid azimuth, when the G-M angle is greater than the magnetic azimuth, first do the following:

1. Add 360 degrees to the magnetic azimuth. In this example, the magnetic azimuth is 5 degrees (see Figure 1.8.8). You can now convert the magnetic azimuth to a grid azimuth because the magnetic azimuth is larger than the G-M Angle.

Note
Because there are no negative azimuths on the azimuth circle, 0 degrees is the same as 360 degrees; therefore, 5 degrees (in this example) is the same as 365 degrees. This is because 5 degrees and 365 degrees are located at the same point on the azimuth circle.
2. Because the magnetic north arc of 365 degrees is longer than the arc from grid north to the azimuth line, you must subtract the G-M angle. This yields a grid azimuth of 353 degrees.

Each time you convert a G-M Angle, construct a G-M Angle diagram that shows the required azimuths. The construction of a diagram takes the guesswork out of converting azimuths when the map does not give any conversion notes.

Converting the G-M Angle requires practice. Become familiar with the proper procedures to follow whether there is an east or west G-M Angle, or the G-M Angle is greater than your grid or magnetic azimuth.

**Conclusion**

This lesson presented map reading skills that you can use not only in later map reading instruction, but also in many practical ways. It discussed how to determine distance and direction (with a protractor and a compass) between two points. It also investigated how to convert the Grid-Magnetic Angle using a grid azimuth from a map or a magnetic azimuth from a compass. Mastering these skills will help you to navigate more effectively when the challenge arises.

The next lesson introduces you to how you determine location. This will give you the skills needed to be able to precisely determine your location, or the location where you need to be.

**Lesson Review**

1. What does the declination diagram on a map indicate?
2. Explain how to convert grid azimuths to magnetic azimuths.
3. Explain how to convert magnetic azimuths to grid azimuths
4. You are given a 13 degree westerly declination. From your location you see a radio tower on a magnetic azimuth of 275 degrees. What azimuth will you use to locate the radio tower on your map?